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Mathematical Structures in Continuous Dynamical Systems. By E. VAN GROESEN 
& E. M. DE JAGER. North Holland, 1994. 617 pp. ISBN 0 444 821 51 1. Dfl295 or 
US$173.50. 

This is really two books in one : the first part by van Groesen is on Poisson structures 
in fluid dynamics, and the second part by de Jager is a mathematical introduction to 
the theory of solitons. Nevertheless, the two parts are related in several ways: both deal 
with partial differential equations (PDEs) from a dynamical systems viewpoint, the 
PDEs in both parts have Hamiltonian structure or its generalization to Poisson 
structure, and solitons occur in many approximations to fluid dynamics problems. 

The dynamical systems viewpoint of a PDE, when the initial value problem is well 
posed, is that it describes the time evolution of a point in a function space, for example 
the space of possible velocity and pressure fields. Implicit in the dynamical systems 
viewpoint is also a concentration on features which do not depend on the choice of 
coordinate system for the function space, for example existence of a time-periodic 
solution rather than an explicit formula for it. 

Hamiltonian systems have always formed an important subclass of dynamical 
systems, because many laws of physics have this special property, beginning with 
Newton’s laws of gravity and including the Euler equations for ideal fluid flow. Why 
this is so is an interesting philosophical question. One possible answer is that all of 
them have a variational principle, and it is a simple step from variational principles to 
Hamiltonian dynamics. But this reply only pushes the question back one stage, and in 
any case I am not aware that Newton formulated gravitation from a variational 
principle. Furthermore, it is only ideal fluid systems (no viscosity) that have a 
Hamiltonian formulation. There is a strong case, however, that this is an important 
limit and hence it merits study. 

Although the first fact one learns about Hamiltonian dynamics is that energy is 
conserved, there is a much deeper conservation property, discovered by PoincarC, that 
lies at the heart of what makes Hamiltonian dynamics special, namely preservation of 
a ‘symplectic form’. In its integrated form, for a Hamiltonian system of the standard 
type dp/dt = -a f f /aq ,  dq/dt = aH/?p, this says that sp- dq round a closed curve in the 
phase space is preserved under time evolution. One of the consequences of preservation 
of symplectic form in a Hamiltonian system is that to each generator of a continuous 
symmetry preserving the symplectic form (if such exist), there is a conserved function. 
Time evolution is a simple example of such a symmetry, and of course leads to the 
conservation of energy. But a more profound example is symmetry of a homogeneous 
fluid under rearrangement. This has no effect on the subsequent evolution. The 
conservation law to which it leads in the Hamiltonian (that is, inviscid) case is Kelvin’s 
circulation theorem. 

Continuous symmetries are the starting point for the generalization from 
Hamiltonian to Poisson dynamics. Two states can be regarded as equivalent if one can 
be reached from the other by a symmetry, and then the dynamics induces ‘reduced’ 
dynamics on the set of equivalence classes. For example, rearrangement symmetry of 
a fluid allows one to reduce Newton’s laws for the position and velocity of fluid 
elements to the Euler equations for the velocity field. The reduced dynamics for a 
Hamiltonian system is, however, only Hamiltonian in a weaker sense. The evolution 
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of any function z on the phase space is given by ‘Poisson equations’ of the form 
dz/dt = {?,HI, where {,I is a Poisson bracket, but the bracket is degenerate. For 
example, the Euler equations for ideal fluid flow are a (degenerate) Poisson system. 

Van Groesen guides the reader carefully and clearly through the theory of Poisson 
systems and develops a wide range of applications to fluid dynamics, from surface 
waves to coherent vortical structures. A very nice feature is that, acknowledging that 
the Hamiltonian case is only an idealized limit in fluid mechanics, Part I concludes with 
a chapter on some effects of dissipation on Poisson systems. 

Turning to Part 11, solitons, as is now well known, are uniformly travelling spatially 
localized solutions of certain types of PDE, which survive interaction with each other 
apart from phase shifts. A famous example is the Korteweg-de Vries (KdV) equation, 
which was originally derived as a long-wave approximation to surface waves on 
shallow water. 

Mathematically, the underlying feature of soliton-bearing PDEs is that they are 
‘completely integrable ’ Hamiltonian systems. For a finite-dimensional Hamiltonian 
system (of dimension 2n) this would mean that there are y1 independent conserved 
quantities whose Poisson brackets are zero, and it would follow that their levels sets are 
tori or cylinders on which the motion is conjugate to a straight line flow. For PDEs 
there is no such clear definition. However, the known soliton PDEs are unified by 
possession of a ‘Lax pair’ formulation dL/dt = [B. L],  where L and B are linear 
operators on some function space, depending on the unknown field of the PDE, and 
[B,L] denotes the commutator BL-LB. For the KdV equation, the operator L is 
simply the Schrodinger operator with the unknown field as potential. The key feature 
of a Lax pair formulation is that the spectrum of L is conserved, and this plays the role 
of a complete set of integrals. Then a high point of the theory is that by the technique 
of inverse scattering it is possible to deduce that any spatially localized initial condition 
evolves (in both forwards and backwards time) into a superposition of solitons and 
small amplitude radiation. 

There are many clever ideas in the theory of solitons, and de Jager takes the reader 
on a detailed tour of this remarkable theory, from the Lax pair formulation and inverse 
scattering to Backlund transformations, biHamiltonian structures, and connections 
with Lie algebras. It is heavy going at times, but a mine of information. 

In summary, I feel that this book provides an excellent review of the role of infinite- 
dimensional Hamiltonian and Poisson dynamical structure in a range of PDE 
problems. These concepts are finding increasingly many further uses, for example in 
atmospheric dynamics, magnetohydrodynamics and plasma physics, and merit wider 
and deeper familiarity. 

R. S. MACKAY 

Topographic Effects in Stratified Flows. By P. G. BAINES. Cambridge University 

The topographic effects of density stratification of a fluid are an important topic of 
fluid mechanics because of their intrinsic interest as well as their applications to 
meteorology and oceanography. Indeed, they play a major role in the momentum 
budget of the Earth’s atmosphere and in the parameterization of general circulation 
models as well as in the prediction of local weather and currents. Of course, it is the 
combination of gravity and stratification that produces the buoyancy, which creates 
the restoring force as well as vorticity, that leads to interesting and important effects. 
However, the effects of the rotation of the Earth as well as stratification are vital to the 
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larger scales of motion of the atmosphere and oceans, and the effects of rotation have 
been excluded from the book (as have the effects of condensation and evaporation of 
water). This exclusion makes possible a more coherent and compact synthesis of 
research on topographic effects at the cost of a rather artificial division of natural 
phenomena. Indeed, the author goes on to exclude the effects of compressibility, 
viscosity and turbulence except for a few sections where they are especially important. 
But the line has to be drawn somewhere, and his plan is a reasonable one. 

There is no comparable book. Since Prandtl’s Essentials of Fluid Dynamics (1952) 
many books have devoted a few pages to topographic effects of stratification, and Yih’s 
Dynamics of Nonhomogeneous Fluids (1 965) and Turner’s Buoyancy Eflects in Fluids 
(1973) have, each in its way, covered the effects of stratification as a whole, inclusive 
of topographic effects. But the World Meteorological Organization published two 
excellent short books: The Airflow Over Mountains, edited by Alaka in 1967, and The 
Airflow Over Mountains. Research 1958-1972, edited by Nicholls in 1973. These cover, 
clearly and comprehensively, the observations and linear theory up to 1972, by which 
time this research was thoroughly understood, and the latter book covers much of the 
nonlinear theory. So the gap in the literature which remained to be filled was a 
comprehensive synthesis of the linear and, especially, nonlinear theory, of numerical 
results, and of interpretation of laboratory experiments and field observations. 

We should be grateful to Professor Baines for filling this gap. He has been working 
for over 20 years on laboratory experiments and field observations of topographic 
effects of stratification as well as the theory, and he has evidently taken time and care 
to write this monograph. 

The contents of the book are indicated well by the chapter titles: 1. Background, 2. 
The flow of a homogeneous layer with a free surface, 3.  Two-layer flows, 4. Waves in 
stratified fluid, 5. Stratified flow over two-dimensional obstacles, 6. Stratified flow past 
three-dimensional topography, 7. Applications to practical modelling of flow over 
complex terrain. In some sense chapters 2 ,3  and 4 as well as 1 are on background, and 
so nearly half the book is filled with work leading to understanding the motion of a 
continuously stratified fluid, but the understanding of this background is an essential 
pre-requisite. Within this framework various themes are developed : (i) anelastic, 
Boussinesq, hydrostatic, small- and large-Richardson-number asymptotics, (ii) laminar 
flow, waves, instability and turbulence, (iii) linear, weakly nonlinear and strongly 
nonlinear phenomena. The balance seems sensible to me, and it is re-assuring to see 
that it is recognizably similar to that of the article by Wurtele, Sharman & Datta in the 
1996 volume of Annual Review of Fluid Mechanics. 

As someone who worked on airflow over a mountain in the 1960s and 1970s, I came 
to this book wondering what is new. My overall impression is that few new 
fundamental ideas have emerged in the last 20 years, but that a lot of the details, 
important for practical people, have been filled in by a great increase in numerical 
simulations, laboratory experiments, and field studies. These are clearly described by 
word and diagram (there are nearly 200 figures in the book) to give flesh to the 
theoretical skeleton that came before. There is a great richness in the flows of a 
stratified fluid past an obstacle, and that richness is revealed. 

Analysis of the references cited reveals 47 from the 1990s, 118 from the 1980s, 45 
from the 1970s, 41 from the 1960s, 17 from the 19.50s and 6 earlier. Of these, 19 were 
by the author of the book. What does this tell us about the topic, the book and the 
author? Well, fluid mechanics is a mature subject, and something once discovered 
endures, so it is still common for us to cite the giants of the nineteenth century although 
it seems absurd to cite Reynolds whenever we use a Reynolds number or to cite 
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Newton or Leibniz whenever we use elementary calculus. In particular, the study of 
airflow over a mountain is about 60 years old, but the author ignores many of the 
pioneers, notably Lyra (who devised and first applied linear theory) and Dubreil- 
Jacotin (who discovered Long’s model before Long, but did not rival Long’s brilliant 
use of the model in theory and experiment). Again, Professor Baines uses the 
Taylor-Goldstein equation without either naming it or citing its discoverers. These 
examples indicate some of the reasons for the distribution of the citations over the 
decades. However, the implication that a book which only cites recent publications will 
itself be ephemeral is inapplicable here. The author has chosen to emphasize recent 
work, so the book’s value as a historical source is limited, but the book will have a long 
shelf life. 

There is the usual crop of minor errors and misprints. It was disturbing to note the 
omission of an important qualification of the very first equation (which is true only if 
the dynamic viscosity of the fluid is uniform), but this leads to no subsequent error 
because viscosity is only briefly covered, and then only in the Boussinesq approximation. 
Such errors are no worse than one expects in any book today, and do little to detract 
from the overall value of the text. 

In all, it is a worthy addition to the series of Cambridge Monographs on Mechanics, 
which will be of lasting usefulness for research workers on airflow over mountains and 
on currents over sea mounts. 

P. G. DRAZIN 


